13 research outputs found

    Modeling and Control of Piezoactive Micro and Nano Systems

    Get PDF
    Piezoelectrically-driven (piezoactive) systems such as nanopositioning platforms, scanning probe microscopes, and nanomechanical cantilever probes are advantageous devices enabling molecular-level imaging, manipulation, and characterization in disciplines ranging from materials science to physics and biology. Such emerging applications require precise modeling, control and manipulation of objects, components and subsystems ranging in sizes from few nanometers to micrometers. This dissertation presents a comprehensive modeling and control framework for piezoactive micro and nano systems utilized in various applications. The development of a precise memory-based hysteresis model for feedforward tracking as well as a Lyapunov-based robust-adaptive controller for feedback tracking control of nanopositioning stages are presented first. Although hysteresis is the most degrading factor in feedforward control, it can be effectively compensated through a robust feedback control design. Moreover, an adaptive controller can enhance the performance of closed-loop system that suffers from parametric uncertainties at high-frequency operations. Comparisons with the widely-used PID controller demonstrate the effectiveness of the proposed controller in tracking of high-frequency trajectories. The proposed controller is then implemented in a laser-free Atomic Force Microscopy (AFM) setup for high-speed and low-cost imaging of surfaces with micrometer and nanometer scale variations. It is demonstrated that the developed AFM is able to produce high-quality images at scanning frequencies up to 30 Hz, where a PID controller is unable to present acceptable results. To improve the control performance of piezoactive nanopositioning stages in tracking of time-varying trajectories with frequent stepped discontinuities, which is a common problem in SPM systems, a supervisory switching controller is designed and integrated with the proposed robust adaptive controller. The controller switches between two control modes, one mode tuned for stepped trajectory tracking and the other one tuned for continuous trajectory tracking. Switching conditions and compatibility conditions of the control inputs in switching instances are derived and analyzed. Experimental implementation of the proposed switching controller indicates significant improvements of control performance in tracking of time-varying discontinuous trajectories for which single-mode controllers yield undesirable results. Distributed-parameters modeling and control of rod-type solid-state actuators are then studied to enable accurate tracking control of piezoactive positioning systems in a wide frequency range including several resonant frequencies of system. Using the extended Hamilton\u27s principle, system partial differential equation of motion and its boundary conditions are derived. Standard vibration analysis techniques are utilized to formulate the truncated finite-mode state-space representation of the system. A new state-space controller is then proposed for asymptotic output tracking control of system. Integration of an optimal state-observer and a Lyapunov-based robust controller are presented and discussed to improve the practicability of the proposed framework. Simulation results demonstrate that distributed-parameters modeling and control is inevitable if ultra-high bandwidth tracking is desired. The last part of the dissertation, discusses new developments in modeling and system identification of piezoelectrically-driven Active Probes as advantageous nanomechanical cantilevers in various applications including tapping mode AFM and biomass sensors. Due to the discontinuous cross-section of Active Probes, a general framework is developed and presented for multiple-mode vibration analysis of system. Application in the precise pico-gram scale mass detection is then presented using frequency-shift method. This approach can benefit the characterization of DNA solutions or other biological species for medical applications

    Fast transactive control for frequency regulation in smart grids with demand response and energy storage

    Get PDF
    This paper proposes a framework for controlling grid frequency by engaging the generation-side and demand-side resources simultaneously, via a fast transactive control approach. First, we use a proportional frequency-price relation to build and analyze a transactive frequency droop controller for a single-area power grid. Then, we develop a transactive demand response system by incorporating a large population of thermostatically controlled air conditioning loads. A proportional-integral controller is used to adjust the setpoint temperature of the air conditioners based on price variations. A battery storage system is then developed and augmented to the system to capture the energy arbitrage effects. A nonlinear price-responsive battery management system is developed to enable effective charging and discharging operations within the battery’s state-of-charge and power constraints. Simulation results indicate that the proposed transactive control system improves the steady-state and transient response of the grid to sudden perturbations in the supply and demand equilibrium. To decouple frequency from price during daily operation and maintain frequency near the nominal value, we propose adding a feedforward price broadcast signal to the control loop based on the net demand measurement. Through various simulations, we conclude that a combination of feedback transactive controller with feedforward price broadcast scheme provides an effective solution for the simultaneous generation-side and demand-side energy management and frequency control in smart power grids

    Automatic Coordination of Internet-Connected Thermostats for Power Balancing and Frequency Control in Smart Microgrids

    No full text
    This paper proposes a novel feedback control strategy, so-called clock-like controller (CLC), to balance power supply and demand in smart microgrids by adjusting the setpoint temperatures of air conditioning (AC) loads. In the CLC algorithm, the grid operator communicates with the individual thermostats via the Internet and adjusts their setpoints by discrete temperature intervals (e.g., ±0.5 °C). Numerical simulations indicate that the proposed algorithm is able to deliver a smooth controllability of the aggregate AC power despite discrete temperature offsets. It can also be used for peak load shedding to mitigate the power generation cost. The CLC algorithm is then integrated into the grid frequency control problem, in which both power generators and loads in the network attempt to regulate the frequency of the system despite disturbances from demand, renewable sources, and local weather conditions. An autonomous microgrid model including a steam and a hydro generator, a solar energy source, and a large number of thermostatic loads is developed to evaluate and demonstrate the proposed method. Simulation results indicate that the AC loads with CLC algorithm can help maintain the power system frequency during extreme events when demand exceeds the maximum generation capacity available to the network. Under normal conditions, the contribution of demand-side control is marginalized by the fast responding generators, because of time delays in the frequency measurement and internet communication network

    Cost-Optimal Coordination of Interacting HVAC Loads in Buildings

    No full text

    Fast Transactive Control for Frequency Regulation in Smart Grids with Demand Response and Energy Storage

    No full text
    This paper proposes a framework for controlling grid frequency by engaging the generation-side and demand-side resources simultaneously, via a fast transactive control approach. First, we use a proportional frequency-price relation to build and analyze a transactive frequency droop controller for a single-area power grid. Then, we develop a transactive demand response system by incorporating a large population of thermostatically controlled air conditioning loads. A proportional-integral controller is used to adjust the setpoint temperature of the air conditioners based on price variations. A battery storage system is then developed and augmented to the system to capture the energy arbitrage effects. A nonlinear price-responsive battery management system is developed to enable effective charging and discharging operations within the battery’s state-of-charge and power constraints. Simulation results indicate that the proposed transactive control system improves the steady-state and transient response of the grid to sudden perturbations in the supply and demand equilibrium. To decouple frequency from price during daily operation and maintain frequency near the nominal value, we propose adding a feedforward price broadcast signal to the control loop based on the net demand measurement. Through various simulations, we conclude that a combination of feedback transactive controller with feedforward price broadcast scheme provides an effective solution for the simultaneous generation-side and demand-side energy management and frequency control in smart power grids

    IMECE2005-81602 A NEW HYSTERESIS MODEL FOR PIEZOELECTRIC ACTUATORS WITH APPLICATION TO PRECISION TRAJECTORY CONTROL

    No full text
    ABSTRACT Piezoelectric actuators with their sub-nanometer resolution and fast frequency response are becoming increasingly important in today's micro-and nano-positioning technology. Along this line, this paper undertakes the development of a nonlinear modeling, system identification and control framework for piezoelectric actuators used in such positioning systems. More specifically, a general nonlinear modeling framework for a single piezoelectric actuator combined with a novel method for describing its hysteretic nonlinearity is proposed. For the actuator generated force, a polynomial form of the nonlinearity is assumed, and the time-varying historydependent parameters of this polynomial are identified through the observed hysteretic characteristics of the actuator. Experimental results demonstrates the validity of the proposed the modeling and identification framework for an in-house high resolution piezoelectric-based stager with capacitive position sensor. Utilizing Lyapunov method and the sliding mode control strategy, the control force acting on the actuator is then designed such that the high frequency tracking control and the asymptotic stability of the system are attained. Simulation results indicate that controller suppresses the high frequency tracking error significantly, noticeably improving the tracking performance. INTRODUCTION Piezoelectric actuators with their sub-nanometer resolution and fast frequency response are becoming increasingly important in today's micro-and nano-positioning technology. Up-growing demand of research, development, and industrial applications, such as scanning probe microscopy, photonics

    Automatic Coordination of Internet-Connected Thermostats for Power Balancing and Frequency Control in Smart Microgrids

    No full text
    This paper proposes a novel feedback control strategy, so-called clock-like controller (CLC), to balance power supply and demand in smart microgrids by adjusting the setpoint temperatures of air conditioning (AC) loads. In the CLC algorithm, the grid operator communicates with the individual thermostats via the Internet and adjusts their setpoints by discrete temperature intervals (e.g., ±0.5 °C). Numerical simulations indicate that the proposed algorithm is able to deliver a smooth controllability of the aggregate AC power despite discrete temperature offsets. It can also be used for peak load shedding to mitigate the power generation cost. The CLC algorithm is then integrated into the grid frequency control problem, in which both power generators and loads in the network attempt to regulate the frequency of the system despite disturbances from demand, renewable sources, and local weather conditions. An autonomous microgrid model including a steam and a hydro generator, a solar energy source, and a large number of thermostatic loads is developed to evaluate and demonstrate the proposed method. Simulation results indicate that the AC loads with CLC algorithm can help maintain the power system frequency during extreme events when demand exceeds the maximum generation capacity available to the network. Under normal conditions, the contribution of demand-side control is marginalized by the fast responding generators, because of time delays in the frequency measurement and internet communication network
    corecore